Peduncle, a Potential Source of Competent Cells for Plant Regeneration in Pearl Millet (*Pennisetum glaucum*)

Smita Shekhawat, N.S. Shekhawat, Sumitra Kumari Choudhary, Harish and Vinod Kataria Biotechnology Unit, Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India

ABSTRACT

Based on field observations, experiences and experiments, we conceptualized that in cereals and grasses the lower part of a peduncle, the uppermost and longest internode that bears and supports an inflorescence/panicle (and also supplies nutrients to reproductive bodies and the seed grains) is a repertoire of rapidly dividing and elongating, almost uniform population of highly meristematic cells that are totipotent/pluripotent. These cells/tissues can be potential sources of competent cells for establishment of regenerative/embryogenic cell cultures. These are soft and rich in sugars while enclosed in boot/flag leaf. We used the peduncle as explants for establishment of regenerative tissue culture in Pennisetum glaucum (Pearl millet, the Bajra/Bajri). The explants were treated with chilled solution of antioxidants and surface sterilized and cut in to discs/slices (2-4 mm thick). These were cultured on surface of autoclaved agar-gelled (0.8% agar-agar), Murashige and Skoog's (MS) medium containing additives (25 mg/l each of ascorbic-acid, citric-acid, adenine sulphate, and 1mM each of L-asparagines, L-glutamine and L-proline), 3% sucrose and 2.0 mg/l of 2, 4-dichlorophenoxyacetic acid (2, 4-D) as plant growth regulator. These produced pale white/yellowish white/pale and organized callus exhibiting high regeneration potential. The callus cultures were maintained and multiplied the best on MS medium containing 2.0 mgl⁻¹ of with 2, 4-D and 1mM each of glutamine, proline and asparagine. On transfer to culture medium with no auxin or lower concentration (0.5 mgl⁻¹) of 2, 4-D, the cultures organized into embryo-like structures and regenerated into plantlets or produced shoots. From each discderived cultures about 10-15 plantlets/shoots differentiated. The differentiated shoots rooted on the same medium. Individual plants were separated from the bunch and transferred to autoclaved soil rite after 25-30 days. About 65-70% of the plantlets acclimatized well to the ex-vitro conditions. The peduncle callus-derived plants flowered and set seed.

Key words: Peduncle, competent cell, antioxidants regeneration

Author for correspondence: N.S. Shekhawat, e-mail: biotechunit@gmail.com